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Abstract

Knowledge of protein–ligand interactions is beneficial for biological process

analysis and drug design. Given the complexity of the interactions and the

inadequacy of experimental data, accurate ligand binding residue and pocket

prediction remains challenging. In this study, we introduce an easy-to-use web

server BindWeb for ligand-specific and ligand-general binding residue and

pocket prediction from protein structures. BindWeb integrates a graph neural

network GraphBind with a hybrid convolutional neural network and bidirec-

tional long short-term memory network DELIA to identify binding residues.

Furthermore, BindWeb clusters the predicted binding residues to binding

pockets with mean shift clustering. The experimental results and case study

demonstrate that BindWeb benefits from the complementarity of two base

methods. BindWeb is freely available for academic use at http://www.csbio.

sjtu.edu.cn/bioinf/BindWeb/.
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1 | INTRODUCTION

Protein–ligand interactions are indispensable for many
biological processes, such as gene expression, signal
transduction, and antigen–antibody interaction.1–7 To
explore the interaction mechanisms, experimental
methods are applied to resolve complex structures, such
as X-ray, nuclear magnetic resonance spectroscopy, and
laser Raman spectroscopy. However, considering the
time-consuming and high cost of experimental methods,
developing efficient computational methods for binding
pocket prediction has become an essential topic in struc-
tural bioinformatics. We roughly categorize existing com-
putational methods according to input features,
computational algorithms, and ligand types.

According to the input features, existing methods
can be generally divided into sequence-based methods
and structure-based methods. Due to the lack of resolved
protein tertiary structures, some methods infer binding
residues from protein primary sequences.8–11 For exam-
ple, DRNApred is a sequence-based nucleic-acid-binding
residue predictor, which utilizes sequence-derived fea-
tures from the input protein sequence, including evolu-
tionary profiles, putative intrinsic disorder, secondary
structures, solvent accessibility, and a variety of physico-
chemical and biochemical properties.9 Although a bind-
ing pocket generally performs a conservative region on a
protein tertiary structure, the contained binding residues
are not necessarily sequential in the protein sequence,
which raises challenges for sequence-based methods.
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Therefore, structure-based methods are proposed to dis-
cover binding patterns from the view of protein tertiary
structures.12–16 For example, structure-based NucleicNet
calculates the surrounding physicochemical environment
of grid points on protein surfaces with the FEATURE
program17 for RNA-binding preference prediction.18

Based on the computational algorithms, existing
methods can be generally grouped into template-based
methods and templated-free methods. A template-based
method usually applies sequence or structure alignment
as a search engine to search templates for a query protein
from an extensive template library of known protein–
ligand complexes, and maps the binding residues from
templates to the query protein.19,20 Differently, template-
free methods are designed to embed the binding patterns
that rely on intrinsic local properties of protein sequences
or structures with machine learning methods. For exam-
ple, DNAPred ensembles hyperplane-distance-based sup-
port vector machines (SVMs) for DNA-binding residue
prediction from protein sequences.21 DeepPocket pro-
poses a 3-dimensional convolutional neural network
(3DCNN) for ligand-general binding pocket prediction
from protein structures.15 Template-based methods can
achieve high confidence predictions when reliable tem-
plates are found, and could be easier interpreted on the
case of having good templates. On the other hand,
template-free methods can potentially identify novel
binding pockets, while template-based methods may fail
due to the lack of similar proteins in the template library.

Based on the ligand types, existing methods can be
roughly divided into ligand-general methods and ligand-
specific methods. Ligand-general methods collect pro-
teins which interact with various ligands as a united
dataset and predict binding residues without distinguish-
ing ligand types. These methods are useful when the
ligand type is unknown, or the number of binding pro-
teins of a specific ligand is too few to train a
model.13,15,16,22 However, their performance may degrade
for a particular ligand type due to the binding diversity of
different ligands. For example, metal complexations are
important for interactions between metal ions and pro-
teins, while the topological features of proteins are more
critical for binding to nucleic acids. Therefore, some
methods focus on predicting binding residues for a spe-
cific ligand type which interacts with enough proteins for
constructing a ligand-specific dataset to train a ligand-
specific predictor. For example, DNAPred and ATPbind
are binding residue predictors for nucleic acids and ATP,
respectively.21,23

In fact, the differences in input features, computa-
tional algorithms and ligand types make existing
methods complement each other. Thus, some consensus
methods integrate various base methods to boost the

identification success rates.14,19,24 From the user's per-
spective, it is imperative to make these computational
methods accessible by developing easy-to-use web
servers.13–16,18,19

In this study, we report a user-friendly web server
BindWeb for ligand binding residue and pocket predic-
tion from protein structures. BindWeb has two func-
tional modes, a ligand-specific mode for seven specific
ligand types (i.e., DNA, RNA, Ca2+, Mn2+, Mg2+, ATP,
and HEME) and a ligand-general mode for any ligand
type. BindWeb is a structure-based consensus method
and integrates two deep-learning-based methods, a graph
neural network (GNN)-based method GraphBind,12 and
a hybrid convolutional neural network (CNN) and bidi-
rectional long short-term memory network (biLSTM)-
based method DELIA.25 Experimental results demon-
strate that BindWeb benefits from the complementarity
of the two base methods and appears more competitive
in binding residue prediction. Furthermore, a spatial
clustering module is designed for assigning the predicted
binding residues into binding pocket(s) according to
their spatial positions. The binding pocket inference
helps discover how many pockets are in the query struc-
ture and provides a clue for further studying the locally
matched geometry between the protein structures and
ligands.

2 | MATERIALS AND METHODS

BindWeb is a user-friendly web server for predicting
ligand binding residues and pockets. It consists of two
deep-learning-based methods, GraphBind and DELIA,
which achieve promising performance on benchmark
datasets.12,25 Considering the complementarity of the two
base methods, we integrate the prediction results of the
two base methods to generate more reliable predictions.
Besides, mean shift clustering is used for binding pocket
prediction.

2.1 | Benchmark datasets

GraphBind and DELIA construct the ligand-specific data-
sets for two types of nucleic acids (DNA and RNA) and
four types of small ligands (Ca2+, Mn2+, Mg2+, and
HEME) from the BioLip database,26 respectively. The
BioLip database semi-manually collects the structures
and interactions of the biologically relevant ligand–
protein complexes from the Protein Data Bank (PDB)27

and defines the binding residues based on the atomic dis-
tance between the residue and the ligand. For each
ligand, proteins are assigned to the training and test sets
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based on their released dates. To evaluate the generaliza-
tion of the methods on novel proteins, the redundant pro-
teins are removed to make sure the sequence identity of a
training (test) set and the sequence identity between a
pair of training and test sets are <30% with CD-HIT.28

The ATP dataset is released in ATPbind23 with sequence
identity <40%. The above datasets are used for training
and evaluating the ligand-specific GraphBind and
DELIA.

To expand the method for unseen ligand binding res-
idue prediction, three datasets are used to train and
evaluate the ligand-general GraphBind-G, including a
training set CHEN11, a validation set JOINED, and a
test set COACH420.12,13 Non-redundant CHEN11 con-
tains 251 proteins that bind to 476 ligands and belong to
different SCOP families.29 JOINED and COACH420
respectively consist of 541 and 420 proteins binding to
various drugs and natural ligands. There are no shared
proteins between the test set and the training/
validation set.

2.2 | GraphBind

The GNN-based GraphBind consists of two modules: the
structural-context-based graph construction and the hier-
archical GNN.12 In graph construction, for each target
residue, a structural context composed of adjacent resi-
dues of the target residue within a fixed distance is
extracted. Then, we represent the structural context as a
graph G¼ V ,E, u,Að Þ, where V , E, u, and A denote node,
edge and graph features, and the adjacency matrix,
respectively. In the graph, a residue is denoted as a node,
which is represented by a feature vector consisting of rel-
ative position encoding, component characteristics, sec-
ondary structure features, and evolutionary conversation
features. An edge is defined as the positional relationship
between two nodes. The hierarchical GNN consists of a
GNN encoder, the gated-recurrent-unit-based GNN
blocks, and a multilayer perceptron classifier. It progres-
sively updates the edge, node, and graph features, and
further learns high-level features for classifying the bind-
ing residues. GraphBind is trained independently on
seven ligand-specific datasets of DNA, RNA, Ca2+, Mn2+,
Mg2+, ATP, and HEME for ligand-specific binding resi-
due prediction. In addition, GraphBind is trained with
ligand-general datasets as GraphBind-G for any ligands.

2.3 | DELIA

DELIA is a biLSTM-CNN-based predictor,25 which inte-
grates biLSTM models and CNN models to integrate

heterogeneous protein information. The biLSTM model
is designed for making predictions based on sequence-
derived features, including two evolutionary conversa-
tion profiles calculated with sequence alignment tools
PSI-BLAST30 and HHblits,31 the secondary structure
profile and relative solvent accessibility predicted with
SCRATCH-1D,32 and the binding propensity predicted
by template-based S-SITE.19 Since the residues closing
to each other in a protein sequence may be far from
each other from a protein tertiary structure view, dis-
tance matrices are used to represent the spatial correla-
tion of residues. The CNN model is applied to learning
binding patterns from the distance matrices. In addi-
tion, a random undersampling-based ensemble strategy
is designed to deal with the imbalanced data and com-
bine prediction results of multiple classifiers trained
with different sub-datasets. Finally, the predicted bind-
ing scores of classifiers are concatenated and processed
with a logistic-regression-based stacked ensemble strat-
egy to generate the final propensity of being a binding
residue. Here, DELIA trains five ligand-specific binding
residue predictors for Ca2+, Mn2+, Mg2+, ATP,
and HEME.

2.4 | BindWeb pipeline

2.4.1 | Consensus of GraphBind and DELIA
predictions

GraphBind and DELIA are constructed based on differ-
ent statistical machine learning models. Specifically,
GraphBind is an end-to-end GNN-based method for
embedding local structural and biophysicochemical pat-
terns from graph representations of residue structural
contexts. In comparison, DELIA integrates Euclidean-
space-based biLSTMs and CNNs to learn local patterns
from residue sequence contexts and the distance matri-
ces, respectively. Given the complementarity in protein
representations and model architectures of the two base
methods, BindWeb integrates them for ligand binding
residue prediction. Specifically, for the shared five ligands
(Ca2+, Mn2+, Mg2+, ATP, and HEME) of GraphBind and
DELIA, BindWeb provides two sets of predictions, high
confidence predictions and medium confidence predic-
tions, which denote the outputs predicted by averaging
and pooling the results of the predictors, respectively.

• High confidence: For each residue, the average of pre-
dicted binding scores of GraphBind and DELIA is
defined as the final binding score, which is used for
binding/non-binding residue classification based on
the averaged thresholds of two base methods.

XIA ET AL. 3 of 9
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• Median confidence: The pooled binding residues pre-
dicted by either GraphBind or DELIA are defined as
binding residues of BindWeb.

Then, the predicted binding residues with high and
medium confidence are clustered into binding pocket(s)
based on their spatial information. Figure 1 shows the
overall pipeline of BindWeb.

2.4.2 | Clustering binding residues to
binding pocket(s) with mean shift clustering

Given that residues located in protein–ligand binding
interfaces tend to form spatial clusters,33 we apply mean
shift clustering34 with the spatial positions of residues to
further identify which of the predicted binding residues
may potentially form the binding pocket(s). Mean shift
clustering is a centroid-based algorithm for locating the
maxima of a density function. Compared with the other
clustering algorithms, mean shift clustering does not
require a predefined number of clusters, which is essen-
tial since the number of binding pocket(s) in a protein is
uncertain. In addition, mean shift clustering is effective
for the case of a few sample-clustering problem in the
Euclidean space, which is useful in our study as the pre-
dicted binding residues in proteins are generally few. It
randomly initializes a set of candidate centroids and iter-
atively updates candidates for centroids to be the mean of

the data within a given region and pushes the neighbor-
ing candidates to form the final centroids until the cen-
troids are basically stable. As shown in Figure 1, for the
iteration t, the algorithm updates the candidate centroid
xtþ1
i as the mean of xti 's neighborhoods by:

xtþ1
i ¼m xti

� � ð1Þ

m xið Þ¼
P

xj � N xið ÞK xj� xi
� �

xj
P

xj � N xið ÞK xj� xi
� � ð2Þ

where m xið Þ is the mean shift vector for moving the cen-
troid toward a region of the maximum increase in the

density of data. K xj� xi
� �¼ 1ffiffiffiffi

2π
p

h
e�

xj�xik k2

2h2 is a Gaussian

kernel function with a bandwidth h. N xið Þ is the set of
neighbors around xi with the given bandwidth h.

Here, mean shift clustering takes the spatial positions
of the predicted binding residues as the inputs, iteratively
searches for the centroids of binding pocket(s), and out-
puts the binding pocket(s). Due to the specificity of differ-
ent ligands, the parameter bandwidth h is optimized by
maximizing the Fowlkes-Mallows index (FMI) of the
training set for each ligand. In particular, for DNA, RNA,
Ca2+, Mn2+, Mg2+, ATP, HEME, and general ligands, the
values of h are 49.5, 49.5, 9.5, 11.5, 11.5, 13.5, 11.5, and
15 Å, respectively.

FIGURE 1 The overall pipeline of BindWeb. The binding scores predicted by GraphBind and DELIA are integrated to produce the

predicted binding residues. Mean shift clustering is applied for clustering the binding residues to binding pocket(s). In the diagram of spatial

clustering, the green points represent the predicted binding residues, the blue and red triangles stand for the position of a centroid in

iteration t and t+1, the black circles show the neighbors of the centroid in iteration t, and the yellow arrow stands for the mean shift vector

4 of 9 XIA ET AL.
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3 | USAGE OF BINDWEB

3.1 | Web server interface

The interface of BindWeb is shown in Figure 2a. The top
panel of the web server provides three links to individual
pages. Users can submit a new job for ligand-binding res-
idue and pocket prediction with a selected function in
homepage. The readme page gives a short description of
the methods. To illustrate the usage of BindWeb, we
introduce the details of the inputs and outputs with an
example input, protein structure 1L2T_A.35

3.2 | Inputs

BindWeb accepts a protein structure in PDB format27

and a unique chain ID of the PDB structure as the
input. If users want to predict binding residues for one
of the following seven ligands, then the ligand-specific
mode should be chosen; otherwise, the ligand-general
mode can be a choice. In the ligand-specific mode,
users can select one or multiple ligands simultaneously.

For DNA and RNA, GraphBind is applied for binding
residue prediction. For the other five ligands, Ca2+,
Mn2+, Mg2+, ATP, and HEME, BindWeb uses Graph-
Bind and DELIA as the prediction engines and displays
the integrated results. Finally, users can optionally pro-
vide an email address to receive the prediction results.

3.3 | Outputs

After a job is submitted on the frontend, the uploaded
protein structure and other inputs are delivered to the
backend program. When a new job is detected, the back-
end program can automatically infer the ligand binding
residues and binding pocket(s). The backend program
extracts the sequence and structure features of the pro-
tein, predicts binding residues with the optimized model
parameters and clusters the predicted binding residues
into binding pocket(s) for each selected ligand. When the
job is finished, the results will be shown on the result
page, and the web server will automatically send the
results to the provided email address.

FIGURE 2 The input page (a) and output page (b) of BindWeb for predicting ATP-binding residues and pockets in the structure

1L2T_A

XIA ET AL. 5 of 9
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Figure 2b shows an example result page, which
includes a “Download results” link, a result table, and
the visualization of binding residues on the protein struc-
ture. In the downloaded result file, for each row, the col-
umns stand for the residue number in the sequence,
residue name, binding residue predictons of GraphBind,
DELIA and BindWeb, and binding pocket predictions. As
shown in the result table, the first column stands for the
ligand type. The protein sequence is given in the second
column with the highlighted predicted binding residues.
For Ca2+, Mn2+, Mg2+, ATP, and HEME, high confi-
dence binding residues are highlighted in red, and
medium confidence binding residues are highlighted in
blue. For DNA, RNA, and general ligands, the predicted
binding residues of GraphBind or GraphBind-G are
shown in red. The third column shows the predicted
binding pockets and the contained residues. Figure 2b
shows two predicted ATP-binding pockets consisting of
15 and 10 residues in protein structure 1L2T_A.35 For the
sake of distinction, the binding and nonbinding residues
are displayed in cartoon and atom-bond formats,
respectively.

4 | RESULTS

4.1 | The integration of GraphBind and
DELIA boosts the performance of BindWeb

To investigate the effectiveness of the integration, Bind-
Web is compared with its base methods GraphBind and
DELIA. For the shared five ligands of GraphBind and
DELIA, five metrics are employed for performance com-
parison, including recall (Rec), precision (Pre), F1-score
(F1), Matthews correlation coefficient (MCC), and the
area under the receiver operator characteristic curve
(AUC).12 Here, BindWeb (high) and BindWeb (medium)
stand for the predictions with high and medium confi-
dence, respectively. As shown in Table 1, the AUCs
(MCCs) of BindWeb with high confidence are 0.009–
0.086 (0.009–0.125) and 0.002–0.018 (0.018–0.078) higher
than those of DELIA and GraphBind for the five ligands,
respectively. The results demonstrate that integrating the
diverse deep learning methods can improve the predic-
tion performance for binding residue prediction. In addi-
tion, BindWeb with medium confidence achieves the

TABLE 1 Performance comparison

of BindWeb and the two base methods
Dataset Method Rec Pre F1 MCC AUC

Ca2+ DELIAa 0.182 0.556 0.274 0.313 0.795

GraphBinda 0.325 0.563 0.410 0.420 0.863

BindWeb (high)b 0.321 0.615 0.422 0.438 0.881

BindWeb (medium)c 0.383 0.515 0.439 0.436 N/Ad

Mn2+ DELIA 0.513 0.632 0.566 0.565 0.903

GraphBind 0.563 0.626 0.591 0.588 0.951

BindWeb (high) 0.516 0.721 0.602 0.606 0.953

BindWeb (medium) 0.645 0.585 0.614 0.610 N/A

Mg2+ DELIA 0.143 0.562 0.228 0.280 0.780

GraphBind 0.259 0.410 0.317 0.320 0.827

BindWeb (high) 0.227 0.547 0.321 0.349 0.841

BindWeb (medium) 0.287 0.394 0.332 0.331 N/A

ATP DELIA 0.642 0.758 0.695 0.685 0.947

GraphBind 0.603 0.666 0.631 0.616 0.939

BindWeb (high) 0.705 0.711 0.708 0.694 0.956

BindWeb (medium) 0.786 0.583 0.670 0.660 N/A

HEME DELIA 0.648 0.660 0.654 0.628 0.951

GraphBind 0.775 0.610 0.682 0.661 0.962

BindWeb (high) 0.787 0.660 0.718 0.698 0.973

BindWeb (medium) 0.852 0.554 0.672 0.659 N/A

Note: Bold face indicates the method yields the best result across the compared methods.
aResults of DELIA and GraphBind are directly from the original studies.12,25

bThe BindWeb predicts binding residues with high confidence.
cThe BindWeb predicts binding residues with medium confidence.
dGiven that the BindWeb (medium) directly pools binding residues predicted by either GraphBind or DELIA
to generate the binary results, it does not provide predicted binding probability for AUC calculation.

6 of 9 XIA ET AL.
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highest recall for all the five ligands, since BindWeb with
medium confidence collects the predicted binding resi-
dues of GraphBind and DELIA and results in more bind-
ing residues.

4.2 | Case study

In this section, we present a HEME-binding protein
structure 6BME36 as a case study to demonstrate the
usage and characteristics of BindWeb. We download the
structure 6BME from the PDB,27 upload it to BindWeb,
and select chain A. Then, we choose the ligand-specific
mode and select the ligand HEME. Finally, we fill in the
email address for receiving results. After the job is sub-
mitted, the web page reloads every 10 seconds until it
automatically redirects to the result page once the job is
finished. Users can bookmark this page to check the
results later.

Figure 3a–d visualize the predictions of the chain A
in the structure 6BME by DELIA, GraphBind, and Bind-
Web with high and medium confidence, respectively.
The chain A of the structure 6BME has 127 residues,
including a HEME-binding pocket with 17 binding resi-
dues. Although the binding pockets predicted by the four
methods overlap with the native binding pocket, there
are still some differences. Specifically, the base methods
DELIA and GraphBind predict 22 and 19 binding

residues, including 13 and 12 true positive residues as
well as 9 and 7 false positive residues, respectively. As
Figure 3d shows, BindWeb with median confidence pre-
dicts 14 true positive residues of the pooled 24 predicted
binding residues from DELIA and GraphBind, increasing
the recall from 0.765 and 0.706 of DELIA and GraphBind
to 0.824. Furthermore, BindWeb with high confidence
reduces 24 predicted binding residues with medium con-
fidence to 21 predicted binding residues with high confi-
dence. Of them, 14 are true positive residues and 7 are
false positive residues. As shown in Figure 3, compared
to other three methods, BindWeb with high confidence
yields an improvement of 0.059–0.083 on MCC and
0.014–0.059 on AUC.

4.3 | Runtime of BindWeb

BindWeb's runtime is affected by its two base predictors.
For ligand-general mode and ligand-specific mode for
nucleic acids, the runtime of BindWeb is determined by
GraphBind. For the other five ligands, the runtime is
determined by DELIA. For a protein with 100 residues,
GraphBind and DELIA take approximately 10 minutes
and an hour, respectively. The runtime of GraphBind is
mainly spent on calculating the evolutionary conversa-
tion profiles with sequence alignment tools PSI-BLAST
and HHblits. Although time-consuming, the experiments

FIGURE 3 (a)–(d) shows the ligand
binding residue predictions of the chain

A in protein structure 6BME by DELIA,

GraphBind, BindWeb with high and

medium confidence, respectively.

XIA ET AL. 7 of 9
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prove that the evolutionary conversation profiles boost
the performance of GraphBind.12In addition to PSI-
BLAST and HHblits, DELIA uses sequence-template-
based S-SITE for binding propensity prediction, resulting
in a longer runtime. A template-based method typically
takes a long time to search the query protein against tem-
plates. For example, the consensus method COACH com-
bines five predictors, including a sequence profile
alignment S-SITE, three structural-templated-based pre-
dictors TM-SITE, FINDSITE, and COFACTOR, and an
ab initio predictor ConCavity. Due to the homologous
template alignments, the web server of COACH takes
several hours for a single protein.19

5 | THE ADVANTAGES AND
LIMITATIONS OF BINDWEB

BindWeb combines GNN-based GraphBind and
biLSTM-CNN-based DELIA for ligand binding residue
prediction with two integration strategies, and the exper-
imental results demonstrate its superiority. By averaging
the predictions of the two base methods, BindWeb with
high confidence yields higher MCCs and AUCs than the
base methods. Meanwhile, recall of BindWeb with
medium confidence is increased by pooling the predicted
binding residues of base methods. In addition, BindWeb
applies mean shift clustering to identify binding
pocket(s) based on spatial coordinates of predicted bind-
ing residues.

In the future, BindWeb will be continuously upgraded
to address its limitations. Given that most ligands do not
have a sufficient number of binding proteins for building
a ligand-specific method, BindWeb only covers seven spe-
cific ligands. We will investigate the few-shot learning or
transfer learning for ligand-specific methods to cover
more ligands with a limited number of binding proteins.
In addition, since many proteins only have primary
sequences but no experimental structures, we expect to
figure out new algorithms for binding residue prediction
from protein structures predicted with the structure pre-
diction algorithms, such as AlphaFold237 and RoseTTA-
Fold.38 Besides, the prediction speed of BindWeb is still
relatively slow, and we expect to accelerate it in the
future.

6 | CONCLUSION

BindWeb is a user-friendly web server for structure-based
ligand binding residue and pocket prediction. It supports
two functional modes: ligand-specific binding residue
prediction for seven specific ligands (i.e., DNA, RNA,
Ca2+, Mn2+, Mg2+, ATP, and HEME) and ligand-general

binding residue prediction. BindWeb integrates GNN-
based GraphBind and biLSTM-CNN-based DELIA for
binding residue prediction and provides a new function
for clustering predicted binding residues into binding
pocket(s). The experimental results verify that the combi-
nation of complementary base methods improves the pre-
diction performance of BindWeb. In the future, we will
continuously upgrade the BindWeb from datasets, func-
tions, and algorithms.
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